HIGH SCHOOL EARTH AND SPACE SCIENCES

Students in high school develop understanding of a wide range of topics in Earth and space science (ESS) that build upon science concepts from middle school through more advanced content, practice, and crosscutting themes. There are five ESS standard topics in middle school: Space Systems, History of Earth, Earth's Systems, Weather and Climate, and Human Sustainability. The content of the performance expectations are based on current community-based geoscience literacy efforts such as the Earth Science Literacy Principles (Wysession et al., 2012), and is presented with a greater emphasis on an Earth Systems Science approach. There are strong connections to mathematical practices of analyzing and interpreting data. The performance expectations strongly reflect the many societally relevant aspects of ESS (resources, hazards, environmental impacts) with an emphasis on using engineering and technology concepts to design solutions to challenges facing human society.

Space Systems: High school students can examine the processes governing the formation, evolution, and workings of the solar system and universe. Some concepts studied are fundamental to science, such as understanding how the matter of our world formed during the Big Bang and within the cores of stars. Others concepts are practical, such as understanding how short-term changes in the behavior of our sun directly affect humans. Engineering and technology play a large role here in obtaining and analyzing the data that support the theories of the formation of the solar system and universe.

History of Earth: Students can construct explanations for the scales of time over which Earth processes operate. An important aspect of Earth and space science involves making inferences about events in Earth's history based on a data record that is increasingly incomplete that farther you go back in time. A mathematical analysis of radiometric dating is used to comprehend how absolute ages are obtained for the geologic record. A key to Earth's history is the coevolution of the biosphere with Earth's other systems, not only in the ways that climate and environmental changes have shaped the course of evolution but also in how emerging life forms have been responsible for changing Earth.

Earth's Systems: Students can develop models and explanations for the ways that feedbacks between different Earth systems control the appearance of Earth's surface. Central to this is the tension between internal systems, which are largely responsible for creating land at Earth's surface (e.g., volcanism and mountain building), and the sun- driven surface systems that tear down the land through weathering and erosion. Students understand the role that water plays in affecting weather. Students understand chemical cycles such as the carbon cycle. Students can examine the ways that human activities cause feedbacks that create changes to other systems.

Weather and Climate: Students understand the system interactions that control weather and climate, with a major emphasis on the mechanisms and implications of climate change. Students understand the analysis and interpretation of different kinds of geoscience data allow students to construct explanations for the many factors that drive climate change over a wide range of time scales.

Human Impacts: Students understand the complex and significant interdependencies between humans and the rest of Earth's systems through the impacts of natural hazards, our dependencies on natural resources, and the environmental impacts of human activities.

HS. Space Systems

Students who demonstrate understanding can:

HS-ESS1-1.

Develop a model based on evidence to illustrate that the life span of the Sun is a function of nuclear fusion in its core, and that stars, through nuclear fusion over their life cycle, produce elements and release energy that eventually reaches Earth in the form of radiation. [Clarification Statement: Emphasis is on the way nucleosynthesis, and therefore the different elements created, varies as a function of the mass of a star and the stage of its lifetime. Emphasis is on the energy transfer mechanisms that allow energy from nuclear fusion in the sun's core to reach Earth. Example applications include solar flares, auroras, the 11-year sunspot cycle and non-cyclic variations over centuries.]

[Assessment Boundary: Assessment does not include details of the atomic and sub-atomic processes involved with nuclear fusion, or details of the many different nucleosynthesis pathways for stars of differing masses.]

HS-ESS1-2.

Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. [Clarification Statement: Emphasis is on the astronomical evidence of the red shift of light from galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars), which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).]

HS-ESS1-4.

Use mathematical or computational representations to predict the motion of orbiting objects in the solar system. [Clarification Statement: Emphasis is on Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as planets and moons.] [Assessment Boundary: Mathematical representations for the gravitational attraction of bodies and Kepler's Laws of orbital motions should not deal with more than two bodies, nor involve calculus.]

Students who demonstrate understanding can: Develop a model based on evidence to illustrate that the life span of the Sun is a function of nuclear fusion in its core, and that stars, through nuclear fusion over their life cycle, produce elements and release energy that eventually reaches Earth in the form of radiation.

Clarification Statement: Emphasis is on the way nucleosynthesis, and therefore the different elements created, varies as a function of the mass of a star and the stage of its lifetime. Emphasis is on the energy transfer mechanisms that allow energy from nuclear fusion in the sun's core to reach Earth. Example applications include solar flares, auroras, the 11-year sunspot cycle and non-cyclic variations over centuries.

Assessment Boundary: Assessment does not include details of the atomic and sub-atomic processes involved with nuclear fusion, or details of the many different nucleosynthesis pathways for stars of differing masses.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	ESS1.A: The Universe and Its Stars	Scale, Proportion, and Quantity
Develop a model based on evidence to	The star called the sun is changing and	The significance of a phenomenon is
illustrate the relationships between	will burn out over a lifespan of	dependent on the scale, proportion, and
systems or components of a system.	approximately 10 billion years.	quantity at which it occurs.
	PS3.D: Energy in Chemical Processes and	
	Everyday Life	
	Nuclear Fusion processes in the center of	
	the sun release the energy that	
	ultimately reaches Earth as radiation.	
	(Secondary)	

Students who demonstrate understanding can: Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe.

Clarification Statement: Emphasis is on the astronomical evidence of the red shift of light from galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars), which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

Science and Engineering Practices Disciplinary Core Ideas Crosscutting Concepts Constructing Explanations and Designing ESS1.A: The Universe and Its Stars **Energy and Matter** Solutions • The study of stars' light spectra and Energy cannot be created or destroyedonly moved between one place and Construct an explanation based on valid brightness is used to identify compositional elements of stars, their another place, between objects and/or and reliable evidence obtained from a variety of sources (including students' movements, and their distances from fields, or between systems. own investigations, models, theories, Earth. simulations, peer review) and the The Big Bang theory is supported by Connection to Engineering, Technology, and observations of distant galaxies receding assumption that theories and laws that **Applications of Science** describe the natural world operate today from our own, of the measured as they did in the past and will continue Interdependence of Science, Engineering, composition of stars and non-stellar to do so in the future. and Technology gases, and of the maps of spectra of the • Science and engineering complement primordial radiation (cosmic microwave **Connections to Nature of Science** each other in the cycle known as research background) that still fills the universe. Other than the hydrogen and helium and development (R&D). Many R&D Science Models, Laws, Mechanisms, and formed at the time of the Big Bang, projects may involve scientists, engineers, and others with wide ranges **Theories Explain Natural Phenomena** nuclear fusion within stars produces all A scientific theory is a substantiated atomic nuclei lighter than and including explanation of some aspect of the natural iron, and the process releases world, based on a body of facts that have electromagnetic energy. Heavier been repeatedly confirmed through elements are produced when certain observation and experiment and the massive stars achieve a supernova stage science community validates each ¥ and explode. ¥

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence.	Atoms of each element emit and absorb characteristic frequencies of light. These characteristics allow identification of the presence of an element, even in microscopic quantities. (Secondary)	 Connection to Nature of Science Scientific Knowledge Assumes an Order and Consistency in Natural Systems Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future. Science assumes the universe is a vast single system in which basic laws are consistent.

Students who demonstrate understanding can: Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.

Clarification Statement: Emphasis is on Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as planets and moons.

Assessment Boundary: Mathematical representations for the gravitational attraction of bodies and Kepler's Laws of orbital motions should not deal with more than two bodies, nor involve calculus.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Using Mathematical and Computational	ESS1.B: Earth and the Solar System	Scale, Proportion, and Quantity
Thinking	Kepler's laws describe common features	Algebraic thinking is used to examine
 Use mathematical or computational 	of the motions of orbiting objects,	scientific data and predict the effect of a
representations of phenomena to	including their elliptical paths around the	change in one variable on another (e.g.,
describe explanations.	sun. Orbits may change due to the	linear growth vs. exponential growth).
	gravitational effects from, or collisions	
	with, other objects in the solar system.	Connection to Engineering, Technology, and
		Applications of Science
		Interdependence of Science, Engineering,
		and Technology
		Science and engineering complement
		each other in the cycle known as research
		and development (R&D). Many R&D
		projects may involve scientists,
		engineers, and others with wide ranges
		of expertise.

HS. History of Earth

Students who demonstrate understanding can:

HS-ESS1-5.

Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks. [Clarification Statement: Emphasis is on the ability of plate tectonics to explain the ages of crustal rocks. Examples include evidence of the ages oceanic crust increasing with distance from mid-ocean ridges (a result of plate spreading) and the ages of North American continental crust decreasing with distance away from a central ancient core of the continental plate (a result of past plate interactions).]

HS-ESS1-6.

Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history. [Clarification Statement: Emphasis is on using available evidence within the solar system to reconstruct the early history of Earth, which formed along with the rest of the solar system 4.6 billion years ago. Examples of evidence include the absolute ages of ancient materials (obtained by radiometric dating of meteorites, moon rocks, and Earth's oldest minerals), the sizes and compositions of solar system objects, and the impact cratering record of planetary surfaces.]

HS-ESS2-1.

Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. [Clarification Statement: Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive mechanisms (such as weathering, mass wasting, and coastal erosion).] [Assessment Boundary: Assessment does not include memorization of the details of the formation of specific geographic features of Earth's surface.]

Students who demonstrate understanding can: Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.

Clarification Statement: Emphasis is on the ability of plate tectonics to explain the ages of crustal rocks. Examples include evidence of the ages oceanic crust increasing with distance from mid-ocean ridges (a result of plate spreading) and the ages of North American continental crust decreasing with distance away from a central ancient core of the continental plate (a result of past plate interactions).

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Engaging in Argument from Evidence	ESS1.C: The History of Planet Earth	Patterns
Evaluate evidence behind currently	Continental rocks, which can be older	Empirical evidence is needed to identify
accepted explanations or solutions to	than 4 billion years, are generally much	patterns.
determine the merits of arguments.	older than the rocks of the ocean floor,	
	which are less than 200 million years old	
	ESS2.B: Plate Tectonics and Large-Scale	
	System Interactions	
	 Plate tectonics is the unifying theory that 	
	explains the past and current movements	
	of the rocks at Earth's surface and	
	provides a framework for understanding	
	its geologic history. (Secondary)	
	PS1.C: Nuclear Processes	
	Spontaneous radioactive decays follow a	
	characteristic exponential decay law.	
	Nuclear lifetimes allow radiometric	
	dating to be used to determine the ages	
	of rocks and other materials. (Secondary)	

Students who demonstrate understanding can: Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history.

Clarification Statement: Emphasis is on using available evidence within the solar system to reconstruct the early history of Earth, which formed along with the rest of the solar system 4.6 billion years ago. Examples of evidence include the absolute ages of ancient materials (obtained by radiometric dating of meteorites, moon rocks, and Earth's oldest minerals), the sizes and compositions of solar system objects, and the impact cratering record of planetary surfaces.

The performance expectations above were developed using	g the following elements from the NRC document A Framev	vork for K-12 Science Education.
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	ESS1.C: The History of Planet Earth	Stability and Change
Solutions	Although active geologic processes, such	Much of science deals with constructing
Apply scientific reasoning to link evidence	as plate tectonics and erosion, have	explanations of how things change and
to the claims to assess the extent to	destroyed or altered most of the very	how they remain stable.
which the reasoning and data support the	early rock record on Earth, other objects	
explanation or conclusion.	in the solar system, such as lunar rocks,	
	asteroids, and meteorites, have changed	
Connections to Nature of Science	little over billions of years. Studying these	
	objects can provide information about	
Science Models, Laws, Mechanisms, and	Earth's formation and early history.	
Theories Explain Natural Phenomena		
A scientific theory is a substantiated	PS1.C: Nuclear Processes	
explanation of some aspect of the natural	Spontaneous radioactive decays follow a	
world, based on a body of facts that have	characteristic exponential decay law.	
been repeatedly confirmed through	Nuclear lifetimes allow radiometric	
observation and experiment and the	dating to be used to determine the ages	
science community validates each theory	of rocks and other materials. (Secondary)	
before it is accepted. If new evidence is		
discovered that the theory does not		
accommodate, the theory is generally		
modified in light of this new evidence. ∀		

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Models, mechanisms, and explanations collectively serve as tools in the development of a scientific theory.		

Students who demonstrate understanding can: Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.

Clarification Statement: Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive mechanisms (such as weathering, mass wasting, and coastal erosion).

Assessment Boundary: Assessment does not include memorization of the details of the formation of specific geographic features of Earth's surface.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	ESS2.A: Earth Materials and Systems	Stability and Change
Develop a model based on evidence to	Earth's systems, being dynamic and	Change and rates of change can be
illustrate the relationships between	interacting, cause feedback effects that	quantified and modeled over very short
systems or between components of a	can increase or decrease the original	or very long periods of time. Some
system.	changes.	system changes are irreversible.
	ESS2.B: Plate Tectonics and Large-Scale	
	System Interactions	
	Plate tectonics is the unifying theory that	
	explains the past and current movements	
	of the rocks at Earth's surface and	
	provides a framework for understanding	
	its geologic history.	
	Plate movements are responsible for	
	most continental and ocean-floor	
	features and for the distribution of most	
	rocks and minerals within Earth's crust.	

HS. Earth's Systems

Students who demonstrate understanding can:

HS-ESS2-2.

Analyze geoscience data to evaluate claims that one change to Earth's surface creates feedbacks that cause changes to other Earth systems. [Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperature that melts glacial and sea ice, which reduces the amount of sunlight reflected from Earth's surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as feedbacks due to the effects of permafrost thawing; how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge and decrease sediment transport, and how the loss of wetlands causes a decrease in local humidity that further reduces wetland extent.]

HS-ESS2-3.

Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection. [Clarification Statement: Emphasis is on both a one-dimensional model of Earth, with radial layers determined by density, and a three-dimensional model, which is controlled by mantle convection and the resulting plate tectonics. Examples of evidence include maps of Earth's three-dimensional structure obtained from seismic waves, records of the rate of change of Earth's magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth's layers from high-pressure laboratory experiments.]

HS-ESS2-5.

Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide evidence for the connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, beach erosion and deposition patterns in relation to substrate type and size, erosion using variations in soil moisture content, and frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering, and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).]

HS-ESS2-6.

Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. [Clarification Statement: Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, permafrost, and biosphere (including humans), providing the foundation for living organisms.]

HS-ESS2-7.

Construct an argument based on evidence about the simultaneous coevolution of Earth's systems and life on Earth. [Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth's other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth's surface. Examples include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.] [Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth's other systems.]

Students who demonstrate understanding can: Analyze geoscience data to evaluate claims that one change to Earth's surface creates feedbacks that cause changes to other Earth systems.

Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperature that melts glacial and sea ice, which reduces the amount of sunlight reflected from Earth's surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as feedbacks due to the effects of permafrost thawing; how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge and decrease sediment transport, and how the loss of wetlands causes a decrease in local humidity that further reduces wetland extent.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Analyzing and Interpreting Data	ESS2.A: Earth Materials and Systems	Stability and Change
 Analyze data using tools, technologies, 	Earth's systems, being dynamic and	Feedback (negative or positive) can
and/or models (e.g., computational,	interacting, cause feedback effects that	stabilize or destabilize a system.
mathematical) in order to make valid and	can increase or decrease the original	
reliable scientific claims or determine an	changes.	Connections to Engineering, Technology and
optimal design solution.		Applications of Science
		Influence of Engineering, Technology, and
		Science on Society and the Natural World
		New technologies can have deep impacts
		on society and the environment,
		including some that were not anticipated.
		Analysis of costs and benefits is a critical
		aspect of decisions about technology.

Students who demonstrate understanding can: Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection.

Clarification Statement: Emphasis is on both a one-dimensional model of Earth, with radial layers determined by density, and a threedimensional model, which is controlled by mantle convection and the resulting plate tectonics. Examples of evidence include maps of Earth's three-dimensional structure obtained from seismic waves, records of the rate of change of Earth's magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth's layers from high-pressure laboratory experiments.

The performance expectations above were developed using	g the following elements from the NRC document A Frames	work for K-12 Science Education.
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	ESS2.A: Earth Materials and Systems	Energy and Matter
Develop a model based on evidence to	Evidence from deep probes and seismic	Energy drives the cycling of matter within
illustrate the relationships between	waves, reconstructions of historical	and between systems.
systems or between components of a	changes in Earth's surface and its	
system.	magnetic field, and an understanding of	Connections to Engineering, Technology and
	physical and chemical processes lead to a	Applications of Science
Connections to Nature of Science	model of Earth with a hot but solid inner	
	core, a liquid outer core, a solid mantle	Interdependence of Science, Engineering,
Scientific Knowledge is Based on Empirical	and crust. Motions of the mantle and its	and Technology
Evidence	plates occur primarily through thermal	Science and engineering complement
Science knowledge is based on empirical	convection, which involves the cycling of	each other in the cycle known as research
evidence.	matter due to the outward flow of energy	and development (R&D). Many R&D
Science disciplines share common rules	from Earth's interior and gravitational	projects may involve scientists,
of evidence used to evaluate	movement of denser materials toward	engineers, and others with wide ranges
explanations about natural systems.	the interior.	of expertise.
Science includes the process of		
coordinating patterns of evidence with	ESS2.B: Plate Tectonics and Large-Scale	
current theory.	System Interactions	
	The radioactive decay of unstable	
	isotopes continually generates new	
	energy within Earth's crust and mantle,	
	providing the primary source of the ♥	

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
	heat that drives mantle convection. Plate tectonics can be viewed as the surface expression of mantle convection.	
	 PS4.A: Wave Properties Geologists use seismic waves and their reflection at interfaces between layers to probe structures deep in the planet. (Secondary) 	

Students who demonstrate understanding can: Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes.

Clarification Statement: Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide evidence for the connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, beach erosion and deposition patterns in relation to substrate type and size, erosion using variations in soil moisture content, and frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering, and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Planning and Carrying Out Investigations	ESS2.C: The Roles of Water in Earth's Surface	Structure and Function
Plan and conduct an investigation	Processes	The functions and properties of natural
individually and collaboratively to	The abundance of liquid water on Earth's	and designed objects and systems can be
produce data to serve as the basis for	surface and its unique combination of	inferred from their overall structure, the
evidence, and in the design: decide on	physical and chemical properties are	way their components are shaped and
types, how much, and accuracy of data	central to the planet's dynamics. These	used, and the molecular substructures of
needed to produce reliable	properties include water's exceptional	its various materials.
measurements and consider limitations	capacity to absorb, store, and release	
on the precision of the data (e.g., number	large amounts of energy, transmit	
of trials, cost, risk, time), and refine the	sunlight, expand upon freezing, dissolve	
design accordingly.	and transport materials, and lower the	
	viscosities and melting points of rocks.	

Students who demonstrate understanding can: Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.

Clarification Statement: Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, permafrost, and biosphere (including humans), providing the foundation for living organisms.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	ESS2.D: Weather and Climate	Energy and Matter
Develop a model based on evidence to illustrate the relationships between systems or between components of a system.	 Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen. Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate. 	The total amount of energy and matter in closed systems is conserved.

Students who demonstrate understanding can: Construct an argument based on evidence about the simultaneous coevolution of Earth's systems and life on Earth.

Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth's other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth's surface. Examples include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.

Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth's other systems.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Engaging in Argument from Evidence	ESS2.D: Weather and Climate	Stability and Change
 Construct an oral and written argument or counter- arguments based on data and evidence. 	Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen.	Much of science deals with constructing explanations of how things change and how they remain stable.
	The many dynamic and delicate feedbacks between the biosphere and other Earth systems cause a continual coevolution of Earth's surface and the life that exists on it.	

HS. Weather and Climate

Students who demonstrate understanding can:

HS-ESS2-4.

Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. [Clarification Statement: Examples of the causes of climate change differ by timescale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth's orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition.] [Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.]

HS-ESS3-5.

Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth's systems. [Clarification Statement: Examples of evidence, for both data and climate model outputs, are for climate changes (such as precipitation and temperature) and their associated impacts (such as on sea level, glacial ice volumes, and physical and chemical characteristics of atmosphere and ocean.] [Assessment Boundary: Assessment is limited to one example of a climate change and its associated impacts.]

Students who demonstrate understanding can: Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.

Clarification Statement: Examples of the causes of climate change differ by timescale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth's orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition.

Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	ESS1.B: Earth and the Solar System	Cause and Effect
Use a model to provide mechanistic	 Cyclical changes in the shape of Earth's 	Empirical evidence is required to
accounts of phenomena.	orbit around the sun, together with	differentiate between cause and
	changes in the tilt of the planet's axis of	correlation and make claims about
Connections to Nature of Science	rotation, both occurring over hundreds of	specific causes and effects.
	thousands of years, have altered the	
Scientific Knowledge is Based on Empirical	intensity and distribution of sunlight	
Evidence	falling on the earth. These phenomena	
 Science arguments are strengthened by 	cause a cycle of ice ages and other	
multiple lines of evidence supporting a	gradual climate changes. (Secondary)	
single explanation.		
	ESS2.A: Earth Materials and Systems	
	The geological record shows that changes	
	to global and regional climate can be	
	caused by interactions among changes in	
	the sun's energy output or Earth's orbit,	
	tectonic events, ocean circulation,	
	volcanic activity, glaciers, vegetation, and	
	human activities. These changes can	
	occur on a variety of time scales from	
	sudden (e.g., volcanic ash clouds) to ♥	

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
	intermediate (ice ages) to very long-term tectonic cycles.	
	 ESS2.D: Weather and Climate The foundation for Earth's global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy's re-radiation into space. Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate. 	

Students who demonstrate understanding can: Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth's systems.

Clarification Statement: Examples of evidence, for both data and climate model outputs, are for climate changes (such as precipitation and temperature) and their associated impacts (such as on sea level, glacial ice volumes, and physical and chemical characteristics of atmosphere and ocean.

Assessment Boundary: Assessment is limited to one example of a climate change and its associated impacts.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Analyzing and Interpreting Data	ESS3.D: Global Climate Change	Stability and Change
Analyze data using computational models	Though the magnitudes of human	Change and rates of change can be
in order to make valid and reliable	impacts are greater than they have ever	quantified and modeled over very short
scientific claims.	been, so too are human abilities to	or very long period of time. Some system
	model, predict, and manage current and	changes are irreversible.
Connections to Nature of Science	future impacts.	
Scientific Investigations Use a Variety of		
Methods		
Science investigations use diverse		
methods and do not always use the same		
set of procedures to obtain data.		
New technologies advance scientific		
knowledge.		
Calantific Knowledge in Board on Franciscol		
Scientific Knowledge is Based on Empirical		
Evidence		
 Science knowledge is based on empirical evidence. 		
Science arguments are strengthened by		
multiple lines of evidence supporting a		
single explanation.		

HS. Human Sustainability

Students who demonstrate understanding can:

HS-ESS3-1.

Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. [Clarification Statement: Examples of key natural resources include access to fresh water (such as rivers, lakes and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals, wildlife, fish, trees, and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting, and soil erosion), and severe weather (such as hurricanes, floods, storm surge, lightning strike fires, and droughts). Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, changes in stream or ocean water temperatures and/or chemistry, and the types of food that can be raised, hunted, fished, harvested, or gathered.]

HS-ESS3-2.

Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.*

[Clarification Statement: Emphasis is on the conservation, recycling and reuse of resources (such as minerals and metals) where possible and on minimizing impacts where it is not. Examples include developing best practices for agricultural soil use, all types of mining, extracting of fossil fuels, and collecting renewable resources. Scientific knowledge indicates what can happen in natural systems--not what should happen.]

HS-ESS3-3.

Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity. [Clarification Statement: Examples of factors that affect the management of natural resources include costs of resource extraction and waste management, per-capita consumption, and the development of new technologies. Examples of factors that affect human sustainability include agricultural efficiency, levels of conservation, and urban planning.] [Assessment Boundary: Assessment for computational simulations is limited to using provided multi-parameter programs or constructing simplified spreadsheet calculations.]

HS-ESS3-4.

Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.* [Clarification Statement: Examples of data on the impacts of human activities could include the quantities and types of pollutants released, changes to biomass and species diversity, or areal changes in land surface use (such as for urban development, agriculture and livestock, or surface mining). Examples for limiting future impacts could range from local efforts (such as reducing, reusing, and recycling resources) to large-scale geoengineering design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean).]

HS-ESS3-6.

Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity. [Clarification Statement: Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.] [Assessment Boundary: Assessment does not include running computational representations but is limited to using the published results of scientific computational models.]

Students who demonstrate understanding can: Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.

Clarification Statement: Examples of key natural resources include access to fresh water (such as rivers, lakes and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals, wildlife, fish, trees, and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting, and soil erosion), and severe weather (such as hurricanes, floods, storm surge, lightning strike fires, and droughts). Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, changes in stream or ocean water temperatures and/or chemistry, and the types of food that can be raised, hunted, fished, harvested, or gathered.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	ESS3.A: Natural Resources	Cause and Effect
Solutions	Resource availability has guided the	Empirical evidence is required to
 Construct an explanation based on valid 	development of human society.	differentiate between cause and
and reliable evidence obtained from a		correlation and make claims about
variety of sources (including students'	ESS3.B: Natural Hazards	specific causes and effects.
own investigations, models, theories,	 Natural hazards and other geologic 	
simulations, peer review) and the	events have shaped the course of human	Connections to Engineering, Technology, and
assumption that theories and laws that	history; [they] have significantly altered	Applications of Science
describe the natural world operate today	the sizes of human populations and have	
as they did in the past and will continue	driven human migrations.	Influence of Engineering, Technology, and
to do so in the future.		Science on Society and the Natural World
		Modern civilization depends on major
		technological systems.

Students who demonstrate understanding can: Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.*

Clarification Statement: Emphasis is on the conservation, recycling and reuse of resources (such as minerals and metals) where possible and on minimizing impacts where it is not. Examples include developing best practices for agricultural soil use, all types of mining, extracting of fossil fuels, and collecting renewable resources. Scientific knowledge indicates what can happen in natural systems--not what should happen.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.			
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts	
Engaging in Argument from Evidence	ESS3.A: Natural Resources	Connections to Engineering, Technology, and	
Evaluate competing design solutions to a	All forms of energy production and other	Applications of Science	
real-world problem based on scientific	resource extraction have associated	Influence of Fusions wing Technology and	
ideas and principles, empirical evidence,	economic, social, environmental, and	Influence of Engineering, Technology, and	
and logical arguments regarding relevant	geopolitical costs and risks as well as	Science on Society and the Natural World	
factors (e.g. economic, societal, environmental, ethical considerations).	benefits. New technologies and social regulations can change the balance of	Engineers continuously modify these systems to increase benefits while	
environmental, ethical considerations).	these factors.	decreasing costs and risks.	
	these factors.	 Analysis of costs and benefits is a critical 	
	ETS1.B. Designing Solutions to Engineering	aspect of decisions about technology.	
	Problems	aspect of decisions about teamiology.	
	When evaluating solutions, it is important	Connections to Nature of Science	
	to take into account a range of		
	constraints, including cost, safety,	Science Addresses Questions About the	
	reliability, and aesthetics, and to consider	Natural and Material World	
	social, cultural, and environmental	Science and technology may raise ethical	
	impacts. (<i>Secondary</i>)	issues for which science, by itself, does	
		not provide answers and solutions.	
		Science knowledge indicates what can	
		happen in natural systems—not what	
		should happen. The latter involves ethics,	
		values, and human decisions about the	
		use of knowledge. ¥	

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
		Many decisions are not made using science alone, but rely on social and cultural contexts to resolve issues.

Students who demonstrate understanding can: Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity.

Clarification Statement: Examples of factors that affect the management of natural resources include costs of resource extraction and waste management, per-capita consumption, and the development of new technologies. Examples of factors that affect human sustainability include agricultural efficiency, levels of conservation, and urban planning.

Assessment Boundary: Assessment for computational simulations is limited to using provided multi-parameter programs or constructing simplified spreadsheet calculations.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.		
Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
		 New technologies can have deep impacts on society and the environment, including some that were not anticipated.

Connections to Nature of Science	Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Science is a Human Endeavor Scientific knowledge is a result of human endeavors, imagination, and creativity.			Connections to Nature of Science Science is a Human Endeavor Scientific knowledge is a result of human

Students who demonstrate understanding can: Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.*

Clarification Statement: Examples of data on the impacts of human activities could include the quantities and types of pollutants released, changes to biomass and species diversity, or areal changes in land surface use (such as for urban development, agriculture and livestock, or surface mining). Examples for limiting future impacts could range from local efforts (such as reducing, reusing, and recycling resources) to large-scale geoengineering design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean).

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	ESS3.C: Human Impacts on Earth Systems	Stability and Change
Solutions	Scientists and engineers can make major	Feedback (negative or positive) can
Design or refine a solution to a complex	contributions by developing technologies	stabilize or destabilize a system.
real-world problem, based on scientific	that produce less pollution and waste	
knowledge, student- generated sources	and that preclude ecosystem	Connections to Engineering, Technology, and
of evidence, prioritized criteria, and	degradation.	Applications of Science
tradeoff considerations.		
	ETS1.B. Designing Solutions to Engineering	Influence of Engineering, Technology, and
	Problems	Science on Society and the Natural World
	When evaluating solutions, it is important	Engineers continuously modify these
	to take into account a range of	systems to increase benefits while
	constraints, including cost, safety,	decreasing costs and risks.
	reliability, and aesthetics, and to consider	
	social, cultural, and environmental	
	impacts. (Secondary)	

Students who demonstrate understanding can: Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.

Clarification Statement: Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.

Assessment Boundary: Assessment does not include running computational representations but is limited to using the published results of scientific computational models.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Using Mathematics and Computational Thinking Use a computational representation of phenomena or design solutions to describe and/or support claims and/or explanations.	• Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere. (Secondary) ESS3.D: Global Climate Change • Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activities.	When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models.

HS. Engineering Design

Students who demonstrate understanding can:

HS-ETS1-1.

Analyze major global challenges to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

HS-ETS1-2.

Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

HS-ETS1-3.

Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

HS-ETS1-4.

Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

Students who demonstrate understanding can: Analyze major global challenges to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
	 ETS1.A: Defining and Delimiting Engineering Problems Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a 	Crosscutting Concepts Connections to Engineering, Technology, and Application of Science Influence of Science, Engineering, and Technology on Society and the Natural World New technologies can have deep impacts on society and the environment,
	 given design meets them. Humanity faces major global challenges today, such as the need for supplies of clean water and food or for energy sources that minimize pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities. 	including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology.

Students who demonstrate understanding can: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	ETS1.C: Optimizing the Design Solution	
Solutions	Criteria may need to be broken down	
 Design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. 	into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (tradeoffs) may be needed.	

Students who demonstrate understanding can: Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	ETS1.B: Developing Possible Solutions	Connections to Engineering, Technology, and
Solutions	When evaluating solutions, it is important	Application of Science
 Evaluate a solution to a complex real- 	to take into account a range of	
world problem, based on scientific	constraints, including cost, safety,	Influence of Science, Engineering, and
knowledge, student-generated sources of	reliability, and aesthetics, and to consider	Technology on Society and the Natural
evidence, prioritized criteria, and tradeoff	social, cultural, and environmental	World
considerations.	impacts.	New technologies can have deep impacts
		on society and the environment,
		including some that were not anticipated.
		Analysis of costs and benefits is a critical
		aspect of decisions about technology.

Students who demonstrate understanding can: Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Using Mathematics and Computational	ETS1.B: Developing Possible Solutions	Systems and System Models
ThinkingUse mathematical models and/or	Both physical models and computers can be used in various ways to aid in the	Models (e.g. physical, mathematical, computer) can be used to simulate
computer simulations to predict the effects of a design solution on system	engineering design process. Computers are useful for a variety of purposes, such	systems and interactions—including energy, matter, and information flows—
and/or the interactions between systems.	as running simulations to test different ways of solving a problem or to see which one is most efficient or economical, and	within and between systems at different scales.
	in making a persuasive presentation to a client about how a given design will meet his or her needs.	